Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.079
Filtrar
2.
Medicine (Baltimore) ; 103(14): e37751, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579024

RESUMO

The demand for Janus Kinase-2 (JAK2) testing has been disproportionate to the low yield of positive results, which highlights the need for more discerning test strategies. The aim of this study is to introduce an artificial intelligence application as a more rational approach for testing JAK2 mutations in cases of erythrocytosis. Test results were sourced from samples sent to a tertiary hospital's genetic laboratory between 2017 and 2023, meeting 2016 World Health Organization criteria for JAK2V617F mutation testing. The JAK2 Somatic Mutation Screening Kit was used for genetic testing. Machine learning models were trained and tested using Python programming language. Out of 458 cases, JAK2V617F mutation was identified in 13.3%. There were significant differences in complete blood count parameters between mutation carriers and non-carriers. Various models were trained with data, with the random forest (RF) model demonstrating superior precision, recall, F1-score, accuracy, and area under the receiver operating characteristic, all reaching 100%. Gradient boosting (GB) model also showed high scores. When compared with existing algorithms, the RF and GB models displayed superior performance. The RF and GB models outperformed other methods in accurately identifying and classifying erythrocytosis cases, offering potential reductions in unnecessary testing and costs.


Assuntos
Inteligência Artificial , Policitemia , Humanos , Aprendizado de Máquina , Algoritmos , Hemoglobinas , Janus Quinase 2/genética
3.
Cancer Med ; 13(7): e7123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618943

RESUMO

OBJECTIVE: To evaluate the incidence, clinical laboratory characteristics, and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. METHODS: We collected a total of 359 Ph-negative MPN patients with classical mutations in driver genes JAK2, MPL, or CALR, and divided them into two groups based on whether they had additional atypical variants of driver genes JAK2, MPL, or CALR: 304 patients without atypical variants of driver genes and 55 patients with atypical variants of driver genes. We analyzed the relevant characteristics of these patients. RESULTS: This study included 359 patients with Ph-negative MPNs with JAK2, MPL, or CALR classical mutations and found that 55 (15%) patients had atypical variants of JAK2, MPL, or CALR. Among them, 28 cases (51%) were male, and 27 (49%) were female, with a median age of 64 years (range, 21-83). The age of ET patients with atypical variants was higher than that of ET patients without atypical variants [70 (28-80) vs. 61 (19-82), p = 0.03]. The incidence of classical MPL mutations in ET patients with atypical variants was higher than in ET patients without atypical variants [13.3% (2/15) vs. 0% (0/95), p = 0.02]. The number of gene mutations in patients with atypical variants of driver genes PV, ET, and Overt-PMF is more than in patients without atypical variants of PV, ET, and Overt-PMF [PV: 3 (2-6) vs. 2 (1-7), p < 0.001; ET: 4 (2-8) vs. 2 (1-7), p < 0.05; Overt-PMF: 5 (2-9) vs. 3 (1-8), p < 0.001]. The incidence of SH2B3 and ASXL1 mutations were higher in MPN patients with atypical variants than in those without atypical variants (SH2B3: 16% vs. 6%, p < 0.01; ASXL1: 24% vs. 13%, p < 0.05). CONCLUSION: These data indicate that classical mutations of JAK2, MPL, and CALR may not be completely mutually exclusive with atypical variants of JAK2, MPL, and CALR. In this study, 30 different atypical variants of JAK2, MPL, and CALR were identified, JAK2 G127D being the most common (42%, 23/55). Interestingly, JAK2 G127D only co-occurred with JAK2V617F mutation. The incidence of atypical variants of JAK2 in Ph-negative MPNs was much higher than that of the atypical variants of MPL and CALR. The significance of these atypical variants will be further studied in the future.


Assuntos
Laboratórios Clínicos , Fatores de Transcrição , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mutação , Receptores de Trombopoetina/genética , Janus Quinase 2/genética
5.
Sci Rep ; 14(1): 9389, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654055

RESUMO

BCR::ABL1-negative myeloproliferative neoplasms are hematopoietic disorders characterized by panmyelosis. JAK2 V617F is a frequent variant in these diseases and often occurs in the 46/1 haplotype. The G allele of rs10974944 has been shown to be associated with this variant, specifically its acquisition, correlations with familial cases, and laboratory alterations. This study evaluated the association between the 46/1 haplotype and JAK2 V617F in patients with myeloproliferative neoplasms in a population from the Brazilian Amazon. Clinical, laboratory and molecular sequencing analyses were considered. Carriers of the G allele of rs10974944 with polycythemia vera showed an increase in mean corpuscular volume and mean corpuscular hemoglobin, while in those with essential thrombocythemia, there was an elevation in red blood cells, hematocrit, and hemoglobin. Associations were observed between rs10974944 and the JAK2 V617F, in which the G allele (OR 3.4; p < 0.0001) and GG genotype (OR 4.9; p = 0.0016) were associated with JAK2 V617F + and an increase in variant allele frequency (GG: OR 15.8; p = < 0.0001; G: OR 6.0; p = 0.0002). These results suggest an association between rs10974944 (G) and a status for JAK2 V617F, JAK2 V617F + _VAF ≥ 50%, and laboratory alterations in the erythroid lineage.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Polimorfismo de Nucleotídeo Único , Humanos , Brasil , Feminino , Masculino , Janus Quinase 2/genética , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Idoso , Adulto , Frequência do Gene , Alelos , Haplótipos , Policitemia Vera/genética , Policitemia Vera/sangue , Genótipo , Predisposição Genética para Doença , Idoso de 80 Anos ou mais
6.
J Cell Mol Med ; 28(8): e18332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661644

RESUMO

The role of KIAA0040 role in glioma development is not yet understood despite its connection to nervous system diseases. In this study, KIAA0040 expression levels were evaluated using qRT-PCR, WB and IHC, and functional assays were conducted to assess its impact on glioma progression, along with animal experiments. Moreover, WB was used to examine the impact of KIAA0040 on the JAK2/STAT3 signalling pathway. Our study found that KIAA0040 was increased in glioma and linked to tumour grade and poor clinical outcomes, serving as an independent prognostic factor. Functional assays showed that KIAA0040 enhances glioma growth, migration and invasion by activating the JAK2/STAT3 pathway. Of course, KIAA0040 enhances glioma growth by preventing tumour cell death and promoting cell cycle advancement. Our findings suggest that targeting KIAA0040 could be an effective treatment for glioma due to its role in promoting aggressive tumour behaviour and poor prognosis.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Feminino , Masculino , Camundongos , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos Nus , Pessoa de Meia-Idade
7.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509561

RESUMO

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Assuntos
Cálcio , Transtornos Mieloproliferativos , Humanos , Fura-2 , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transdução de Sinais , Mutação , Receptores da Eritropoetina/genética , Janus Quinase 2/genética
8.
Rev Assoc Med Bras (1992) ; 70(1): e20230497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511749

RESUMO

OBJECTIVE: This aim of this study was to evaluate hemoglobin and hematocrit values of polycythemia vera and secondary polycythemia patients with updated World Health Organization thresholds. In addition, by determining our own threshold values, we aimed to demonstrate the necessity of bone marrow biopsy and genetic analysis to be used for further diagnosis in patients with high-normal hematocrit and hemoglobin values. METHODS: A cross-sectional and retrospective study was performed with the medical records of patients from Eskisehir City Hospital hematology clinics and outpatient clinics between July 1, 2019 and July 1, 2020. The study included patients with polycythemia, divided into two groups according to polycythemia vera and secondary polycythemia. A bone marrow biopsy was performed on patients with either Janus kinase mutation positivity and/or subnormal erythropoietin levels. Receiver operating characteristics analysis was used to find threshold values, and the diagnostic efficiency of these values in differentiating World Health Organization thresholds in 2008 and 2016 was evaluated. RESULTS: A total of 73 patients were included. The median age was 43.5 years (min: 18; max: 84). The hematocrit value of 54.1 was predicted to diagnose polycythemia vera with a sensitivity of 45% and a specificity of 80%. Subsequent analysis revealed that an hemoglobin value of 17.7 was indicative of diagnosing polycythemia vera with a sensitivity of 60% and a specificity of 63%. The mean follow-up length was 6.4 months (2-12). CONCLUSION: Our study demonstrated that modified World Health Organization criteria might lead to unnecessary additional tests for polycythemia vera patients with high-normal hemoglobin and hematocrit values.


Assuntos
Policitemia Vera , Policitemia , Humanos , Adulto , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Policitemia Vera/patologia , Estudos Retrospectivos , Policitemia/diagnóstico , Estudos Transversais , Hemoglobinas , Janus Quinase 2/genética
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 207-214, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38512030

RESUMO

Objective To investigate the role of human leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in the regulation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) and phosphatidylinositol 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT /mTOR) signaling pathways in human acute myeloid leukemia HEL cells carrying the JAK2 V617F mutation, along with its effects on cell proliferation and apoptosis. MethodsThe JAK2 V617F mutation was identified using reverse transcription PCR and gene sequencing. The protein phosphatase (PTP) recruited by LAIR-1 was determined through co-immunoprecipitation and Western blot analysis. The proliferation of HEL cells was detected by CCK-8 assay. The apoptosis rate of HEL cells was detected by flow cytometry with annexin V-FITC/PI labeling. Western blot analysis was employed to assess the phosphorylation status of proteins involved in the JAK/STAT and PI3K/AKT/mTOR pathways, as well as the expression levels of cyclinD1, B cell lymphoma 2 (Bcl2), and Bcl2 associated X protein (BAX). Results In HEL cells containing the JAK2 V617F mutation, LAIR-1 was observed to recruit SH2-containing protein tyrosine phosphatase 2 (SHP-2) upon binding with its ligand collagen. Moreover, LAIR-1 downregulated the tyrosine phosphorylation levels of JAK2, STAT1, STAT3, STAT5, AKT and mTOR and significantly reduced the expression of cyclin D1 and Bcl2, while having no effect on the expression of BAX. In addition, LAIR-1 exhibited a significantly inhibitory effect on cell proliferation and promoted apoptosis in HEL cells. Conclusion In HEL cells with JAK2 V617F mutation, LAIR-1 can inhibit the activation of JAK/STAT and PI3K/AKT/mTOR signaling pathways by recruiting SHP-2, thereby inhibiting the proliferation of HEL cells and promoting cell apoptosis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Imunológicos , Humanos , Proteína X Associada a bcl-2 , Serina-Treonina Quinases TOR , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Transdução de Sinais , Mutação , Janus Quinase 2/genética
10.
Immun Inflamm Dis ; 12(3): e1224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517042

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by numerous factors, such as immune system dysfunction and genetic factors. MicroRNAs (miRNAs) play a crucial role in UC pathogenesis, particularly via the JAK-STAT pathway. Our aim was to investigate the association between miRNA-101 and JAK2-STAT3 signaling pathway with inflammatory cytokines in UC patients. METHODS: We enrolled 35 UC patients and 35 healthy individuals as the control group, referred to Shariati Hospital, Tehran, Iran. Patients were diagnosed based on clinical, laboratory, histological, and colonoscopy criteria. RNA and protein extracted from tissue samples. Real-time PCR was used to assess the expression levels of miRNA-101, interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and IL-10 genes, while western blot was employed to measure levels of P-STAT3, total STAT3, and JAK2 proteins. RESULTS: Expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 significantly increased, while the expression of IL-10 significantly decreased in the case group versus controls. Additionally, miRNA-101 expression was significantly higher in UC patients. A significant correlation between miRNA-101 and IL-6 expression was observed, indicating their relationship and possible impact on cell signaling pathways, JAK2-STAT3. No significant changes were observed in phosphorylated and total STAT3 and JAK2 protein expression. CONCLUSION: This study provides evidence of increased miRNA-101 expression in UC tissue, suggesting a potential correlation between miRNA-101 and IL-6 expression and their involvement in the JAK2-STAT3 pathway. The study confirms alterations in UC patients' pro-inflammatory cytokines and anti-inflammatory IL-10. However, further investigations are needed to understand the exact role of miRNA-101 in UC pathogenesis fully.


Assuntos
Colite Ulcerativa , MicroRNAs , Humanos , Citocinas/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , MicroRNAs/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-1beta/genética , Janus Quinases/metabolismo , Transdução de Sinais , Irã (Geográfico) , Fatores de Transcrição STAT/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
12.
Sci Adv ; 10(10): eadl2097, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457493

RESUMO

Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.


Assuntos
Eritropoetina , Janus Quinase 2 , Inteligência Artificial , Eritropoetina/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Receptores da Eritropoetina/genética , Transdução de Sinais/genética , Humanos
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 197-201, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387921

RESUMO

OBJECTIVE: To investigate the relationship between mutated genes and clinical features in patients with essential thrombocythemia (ET). METHODS: The clinical data of 69 patients with ET from October 2018 to March 2022 were retrospectively analyzed. According to driver mutation type, patients were divided into JAK2 group, CALR group and triple-negative group. The sex, age, cardiovascular risk factors, thrombosis, splenomegaly, routine blood test and coagulation status of patients in three groups were analyzed. RESULTS: Among 69 ET patients, 46 cases were associated with JAK2 mutation, 14 cases with CALR mutation, 8 cases with triple-negative mutation, and one with MPL gene mutation. There were no significant differences in age and sex among the three groups (P >0.05). The highest thrombotic rate was 26.09% (12/46) in JAK2 group, then 12.5% (1/8) in triple-negative group, while no thrombotic events occurred in CALR group. The incidence of splenomegaly was the highest in JAK2 group (34.78%), while no splenomegaly occurred in triple-negative group. The white blood cell (WBC) count in JAK2 group was (9.00±4.86)×109/L, which was significantly higher than (6.03±2.32)×109/L in CALR group (P <0.05). The hemoglobin (Hb) and hematocrit (HCT) in JAK2 group were (148.42±18.79) g/L and (0.44±0.06)%, respectively, which were both significantly higher than (131.00±15.17) g/L and (0.39±0.05)% in triple-negative group (P <0.05). The platelet (PLT) in JAK2 group was (584.17±175.77)×109/L, which was significantly lower than (703.07±225.60)×109/L in CALR group (P <0.05). The fibrinogen (Fg) in JAK2 and triple-negative group were (2.64±0.69) g/L and (3.05±0.77) g/L, respectively, which were both significantly higher than (2.24±0.47) g/L in CALR group (P <0.05, P <0.01). The activated partial thromboplastin time (APTT) in triple-negative group was (28.61±1.99) s, which was significantly decreased compared with (31.45±3.35) s in CALR group (P <0.05). CONCLUSIONS: There are differences in blood cell count and coagulation status among ET patients with different driver gene mutations. Among ET patients, JAK2 mutation is most common. Compared with CALR group, the thrombotic rate, WBC and Fg significantly increase in JAK2 group, while PLT decrease. Compared with triple-negative group, the incidence of splenomegaly and HCT significantly increase. Compared with CALR group, Fg significantly increases but APTT decreases in triple-negative group.


Assuntos
Trombocitemia Essencial , Trombose , Humanos , Calreticulina/genética , Janus Quinase 2/genética , Mutação , Estudos Retrospectivos , Esplenomegalia/complicações , Trombocitemia Essencial/genética , Trombocitemia Essencial/complicações
14.
Exp Hematol ; 132: 104178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340948

RESUMO

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Eritropoese/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transdução de Sinais , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
15.
Future Oncol ; 20(11): 703-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318719

RESUMO

JAK inhibitors are the current standard of care in myelofibrosis, but many do not address and may worsen anemia; thus, anemia-related responses have traditionally been overlooked as efficacy end points in pivotal clinical trials, leading to a lack of consistency and analytic detail in their reporting. Here we apply our experiences in the phase III trials of momelotinib, a JAK1/JAK2/ACVR1 inhibitor and the first therapy indicated by the US FDA for myelofibrosis patients with anemia, to highlight how application of different criteria impacts the anemia-related benefits reported for any potential treatment in myelofibrosis. We advocate for a convention of a new expert consensus panel to bring consistency and transparency to the definition of anemia-related response in myelofibrosis.


What is this Perspective about? Anemia (too few healthy red blood cells) is common in patients with myelofibrosis. While it is becoming more common to measure the anemia benefits associated with potential treatments for myelofibrosis in clinical trials, different definitions of anemia benefit are available. This Perspective reviews these definitions, the differences between them, and why consistency and clarity in measuring anemia benefit matter. The definitions used in clinical trials of momelotinib, a treatment for patients with myelofibrosis and anemia, are also explained to show how the anemia benefit observed in these trials could have changed if different definitions were used. What does this Perspective show? Definitions of anemia benefit may include the number of red blood cell transfusions a patient receives, the amount of hemoglobin (a red blood cell protein) in their blood, or a combination thereof. Considerations such as timing, the types of patients included, and other factors are not consistent across definitions and not always clearly reported. Results when different definitions of anemia benefit were followed in the momelotinib clinical trials show that the amount of benefit observed with treatments changes depending on which definition is used. What conclusions can be drawn from this Perspective? More consistency and clarity in the definitions of anemia benefit in myelofibrosis clinical trials are needed, suggesting that a new panel of experts should come together to discuss this topic.


Assuntos
Anemia , Inibidores de Janus Quinases , Mielofibrose Primária , Humanos , Mielofibrose Primária/complicações , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/tratamento farmacológico , Consenso , Janus Quinase 2/genética , Anemia/diagnóstico , Anemia/tratamento farmacológico , Anemia/etiologia , Inibidores de Janus Quinases/uso terapêutico , Nitrilas/uso terapêutico
17.
Adv Sci (Weinh) ; 11(15): e2306623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342622

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Functionally uncharacterized genes are an attractive repository to explore candidate oncogenes. It is demonstrated that C21orf58 displays an oncogenic role in promoting cell growth, tumorigenesis and sorafenib resistance of HCC cells by abnormal activation of STAT3 signaling. Mechanistically, a novel manner to regulate STAT3 signaling that adaptor C21orf58 forms a ternary complex is reveal with N-terminal domain of STAT3 and SH2 domain of JAK2, by which C21orf58 overactivates wild-type STAT3 by facilitating its phosphorylation mediated by JAK2, and hyper-activates of constitutively mutated STAT3 due to preferred binding with C21orf58 and JAK2. Moreover, it is validated that inhibition of C21orf58 with drug alminoprofen, selected by virtual screening, could effectively repress the viability and tumorigenesis of HCC cells. Therefore, it is identified that C21orf58 functions as an oncogenic adaptor, reveal a novel regulatory mechanism of JAK2/STAT3 signaling, explain the cause of abnormal activity of activated mutants of STAT3, and explore the attractive therapeutic potential by targeting C21orf58 in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
18.
Leukemia ; 38(3): 570-578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321107

RESUMO

Myeloproliferative neoplasms (MPNs) are a group of chronic hematologic malignancies that lead to morbidity and early mortality due to thrombotic complications and progression to acute leukemia. Clinical and mutational risk factors have been demonstrated to predict outcomes in patients with MPNs and are used commonly to guide therapeutic decisions, including allogenic stem cell transplant, in myelofibrosis. Adolescents and young adults (AYA, age ≤45 years) comprise less than 10% of all MPN patients and have unique clinical and therapeutic considerations. The prevalence and clinical impact of somatic mutations implicated in myeloid disease has not been extensively examined in this population. We conducted a retrospective review of patients evaluated at eight Canadian centers for MPN patients diagnosed at ≤45 years of age. In total, 609 patients were included in the study, with median overall survival of 36.8 years. Diagnosis of prefibrotic or overt PMF is associated with the lowest OS and highest risk of AP/BP transformation. Thrombotic complications (24%), including splanchnic circulation thrombosis (9%), were frequent in the cohort. Mutations in addition to those in JAK2/MPL/CALR are uncommon in the initial disease phase in our AYA population (12%); but our data indicate they may be predictive of transformation to post-ET/PV myelofibrosis.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Trombocitemia Essencial , Trombose , Humanos , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Mielofibrose Primária/genética , Mielofibrose Primária/terapia , Policitemia Vera/genética , Trombocitemia Essencial/genética , Canadá/epidemiologia , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Trombose/genética , Janus Quinase 2/genética , Mutação , Calreticulina/genética
19.
Bull Math Biol ; 86(3): 32, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363386

RESUMO

In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...